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Today

e What is ADMM for?

e Dual ascent method

e Dual decomposition

e Method of multipliers

e Alternating direction method of multipliers (ADMM)

e Applications for

— general objective functions
— constrained convex optimization
— lasso

— consensus optimization for SVM and lasso (distributed statistical learning)

e Conclusion
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What is ADMM for?

e ADMM is for

— machine learning (or statistical learning) with huge data sets

— decentralized optimization where

« agents (or devices in loT environment) coordinate to solve large problem by
iteratively solving small problems and being coordinated by central agent

e Purpose of the talk

— be exposed to a disciplined way of ML algorithm parallelization

— find room for improvement for my own work area
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Dual ascent method

e consider convex equality-constrained optimization problem:

minimize  f(x)
subjectto Ax = b

o Lagrangian defined by L(z,y) = f(z) + y' (Az — b)
e dual function defined by

g(y) = inf L(z,y) = — Sgp((—ATy>Taj —flx) —by=—f(—A"y)—b'y

e dual probem defined by
maximize g(y)
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Dual ascent method

e gradient method for dual problem:

Y =" + " Vg(y")

where Vg(y) = AZ — b with £ = argmin_, L(x, y)
e this fact induces the following dual ascent method:
"= argmin L(x, yk)

yk—l—l L yk + (){k(ACEk+1 . b)

— consists of two stes; x-minimization and dual update
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Dual decomposition

suppose that f is separable in x1, ..., Ty, t.e.,
f(z) = fi(z1) + -+ fy(zn)
where x = [ x1 - TN ]T

then, L is separable, too, since
N N N
L(z,y)=> fi(z)+y" (Z Ajzi — b) = (filzi) + v Aiz) — by
i=1 i=1 i=1

thus, x-minimization step splits into /N separate minimizations:

T = argmin L;(x;, yk) = argmin(fi(z;) + yTAixi)

Ty Zq

parallelism can be employed!
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Method of multipliers

e dual ascent fails, e.g., when f is an affine function in x!

e one solution: augmented Lagrangian

Ly(z,y) = f(z) +y (Az —b) + (p/2)|| Az — b]|

e method of multipliers:
"1 .= argmin L,(x, y")
xr

y' =y 4 (At = b)
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Optimality condition

e optimality conditions: Az* — b =0, Vf(z*) + Aly* =0

o " minimizes L,(x, y"), hence

0 = VmLp(:UkH, yk)
= Vof@") + AT+ p(Az"T — b))

e thus, dual feasibility achieved!

e primal feasibility achieved in limit: limy_, Azl =
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Pros and cons of method of multipliers

e pros: it works even for nondifferentiable or affine f possibly with +o00 value

e cons: the penalty term deprives it of its capability of parallelism!
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Alternating direction method of multipliers (ADMM)

e ADMM

— retains the robustness of method of multipliers
x can deal with nondifferentiable f

+ can deal with affine f
x can deal with f with 4co value

— supports decomposition, hence parallelism

o dubbed “robust dual decomposition” or “decomposable method of multipliers”
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ADMM

e ADMM formulation:
minimize  f(x) + g(2)
subject to Ax + Bz = c

where f and g convex

e then, the augmented Lagrangian defined by

Ly(z,2,y) = f(z) + g(2) + y (Az + Bz —¢) + (p/2)||Az + Bz — |

e finally, ADMM steps:
"= argmin, L,(z, 2", y")
z-minimization:  2"T! := argmin, L, (2", 2z, y*)

dual update: yk_H = yk + p(Aa:kH 1+ Bkt c)

T-minimization: x
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Optimality conditions

e optimality conditions

primal feasibility: Ax + Bz —c =0
dual feasibility: Vi(x)+ ATy =0, Vg(z) + By =0

k+1 k+1

® since 2

minimizes L ,(x ,z,yk),

0

Vg(z"™) + BY (" + p(Az" 4+ B2" — )
vg(zk‘—l—l) _|_ BTyk—l—l

k+1 k+1

— thus, (2", 2"t y*T1) satisfies the second dual feasibility condition!

e primal feasibility and the first dual feasibility are achieved as kK — oo
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ADMM in scaled form

e rewrite augmented Lagrangian with r = Ax + Bz — cand u = (1/p)y:

Lp(xazay) —

f(z) +9(2) + vy (Az + Bz — ¢) + (p/2)| Az + Bz — cll;
f(@) +g(2) + (p/2)(Irllz + (2/p)y"r)

f(2) +g(2) + (p/2)(|Ir + (1/p)yllz — [1(1/p)yll3)

f(x) +9(2) + (p/2)[|Az + Bz — ¢ + ull; = (p/2)]|ull2

e ADMM in scaled form: (with v* := (1/p)y")

T-minimization:
zZ-minimization:
dual update:

"t = argmin, (f(x) + (p/2)||Ax + Bz" — ¢ + Uk”g)
2= argmin, (g(2) + (p/2)]| Az + Bz — ¢ + u*|]3)
W= uF 4 (Axkﬂr1 4+ Bzt — c)

e Note that u* = % + Zle r* with r* = Az* + Bz — ¢
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Convergence

e assuming that
— f and g are convex, closed, proper, i.c.,

{(z,t) e R" xR f(z) < t}, {(2,t) ER" X R | g(z) <t}

are closed, nonempty, convex sets
— L has a saddle point, i.e., existence of (™, z*, y™) such that

LO(x*7 Z*ay) S LO(x*a Z*a y*) S LO(xa < y*)

holds for all x, z, y
e ADMM converges:

— jterates approach feasibility: Az* + Bz¥ — ¢ — 0
— objective approaches optimal value: f(z*) 4+ g(z*) — p*
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Common patterns

e x-update step requires minimizing

f(z) + (p/2)|| Az + " |

where v* = BzF — ¢ -+ u”

® z-update step requires minimizing
k2
9(z) + (p/2)||Bz + w”||;

where w* = AzFt — ¢ + ¥

Mar 25, 2022

e a few special cases enable the simplification of these updates (by exploting special

structures)
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Decomposition

® suppose
— f is block-separable:

f(x) = fiz1) + -+ fn(zN)

— A comformably block separable, i.e., AT A is block diagonal

AT _A’{Al 79 0
ATa=| (A oAy )=| 0 R0

AT : : . :

N |0 0 o ANAN

e then, x-update splits into N parallel updates of x;

e the very same thing can be applied to z-udpate
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What is proximal operator?

e when A = I, xz-update becomes

z* = argmin (f(z) + (p/2)]lx — v[l}) = prox(v)
x e
e furthermore,
— if f = I¢, id.e., f is indicator function of C' C R", then

=T (v),

i.e., projection onto C.
— if f = A|| - ||1, i.e., fis I3 norm, then

ac:_ = Sx/p(vi),

i.e., soft thresholding where S,(v) = (v —a)y — (—v — a)+
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What if the objective is quadratic?

o assume f(x) = (1/2)a’ Pz + q'z 4+ r

e then, x-update becomes

T = argmin ((I/Z)xTPm +q z4+r+(p/2)||Az — ’UH%)
= (P+pA"A) " (pATv - q)
e matrix inversion lemma implies

(P4 pAT A =P — pP AT (T + pAP AT AP

e if direct method is used, cache factorization of P + pAY A or I, pAP ' A" cen save
tremendous of computation efforts
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Solutions for general objective functions

e if f is smooth,
e standard methods can be used:

— Newton’s method, gradient method, quasi-Newton's method

— preconditioned CG, limited-memory BFGS (scale to very large problems)
e other techniques:
— warm start

— early stopping with variant (or adaptive) tolerances as algorithm proceeds
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Constrained convex optimization

® generic constrained optimization:

minimize  f(x)
subjectto x € C

e ADMM form:
minimize  f(x) 4+ g(2)
subjectto = — 2z =20
where g(z) = I¢(2)
e then, ADMM iterations become:

. 2
"t .= argmin, (f(ﬂf) + (p/2) ||z — 2"+ uk\|2)
P P C

B i g 8
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Lasso formulation

e problem formulation:

minimize (1/2)||Az — b||§ + Al|x]|1

e ADMM form:
minimize  (1/2)||Ax — ng-l—)\HZHl

subjectto x*x — 2z =0

e ADMM iterations:

A (ATA + ,oI)_1 (ATb + pzt — yk)
S S Sx/p (xk—i—l 4 yk/p)
yHL = P (wkﬂ . Zk+1)
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Lasso computational example

e for dense A € R?P00x5000 ;o 5000 predictors and 1500 measurements

e computation efforts:

— 1.32 seconds for factorization

— 0.03 seconds for subsequent ADMM iterations

— 2.97 seconds for lasso solve (~ 50 ADMM iterations)
— 4.45 seconds for full regularization path (for 30 As)

ADMM @ Gauss Labs Global R&D Weekly

Mar 25, 2022

22



Sunghee Yun Mar 25, 2022

Consensus optimization (CO)

e sum of NN functions as objective

minimize Zfll fi(x)
— for example, f; could be the loss function of ith training data block

e ADMM form:
minimize Zf\il fi(x;)
subjectto x; — 2z =0
— x; Is t¢th local variable
— z is the global variable
— x; — z = 0 are consistency or consensus constraints
— regularization can be added via g(z)
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CO using ADMM

e lLagrangian:

N

Mar 25, 2022

Loz, 2,y) = > (Filw:) + ] (@i = 2) + (p/2) i — 2113)
=1
e ADMM iterations:
k+1 : kT 2
i = argmin (filz) +ul (@ - 2) + (0/2) |2 — 2]13)

N
A= %Z(kH—F(I/P)’yf)

y]'ﬁ—l—l P _|_ p(ajk—l—l k+1)

1
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Statistical interpretation

e f; is negative log-likelihood for parameter x given tth data block

e "1 is MAP estimate under prior N'(z + (1/p)y’, pI)

e processors only need to support a Gaussian MAP method

— consensus yields global maximum-likelihood estimate
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Consensus classification

e given data set, (a;,b;), i =1,..., N wherea; € R", b; € {—1,1}
e linear classifier sign(a’ w + v) with (vector) weight or support vector w, offset v
e margin for ith data is b;(a; w + v)

e loss for ith data is l(b,-(afw + v)) where [ is loss function, e.g., hinge, logistic,
probit, exponential, etc.

e choose w, v so as to minimize

% ; l(bi(a] w+v)) + r(w)

— r(w) is regularization term, e.g., l2, 1, 1,, etc.

e split data and use ADMM consensus to solve the optimization problem
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Consensus SVM example

e hinge loss I[(u) = (I — w)+ with Iy regularization

e toy problem with n = 2, N = 400 to illustrate

e data split into 20 groups, in worst possible way: each group contains only positive or
negative data
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The 1st Epoch

10 T

ADMM @ Gauss Labs Global R&D Weekly 28



Sunghee Yun Mar 25, 2022

The 5th Epoch
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The 40th Epoch

10 T
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Distributed lasso

e example with dense A € R™*" where m = 400, 000 and n = 8, 000

— distributed solver written in C using MPIl and GSL
— no optimization or tuned libraries (like ATLAS, MKL)

— split into 80 subsystems across 10 (8-core) machines

e computation efforts:
— 30 seconds for loading data
— 5 minutes for factorization
— 2 seconds for subsequent ADMM iterations

— 5 ~ 6 minutes for lasso solve (~ 15 ADMM iterations)
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Conclusion
e ADMM
— gives simple single-processor algorithm that is competitive with state-of-the-art
algorithms

— can also be used for solving a very large problems in distributed manner
* local agents solve each problem parallely

« central (or global) agent gathers local parameters from local agent, updates (dual)
parameters, broadcasts to local agents

— provides a method for distributed computing with data split
— can think of it as a federated learning, e.g., for privacy protection

— can apply it to non-convex problems (without convergence guarantee)
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