
Distributed Optimization and Statistical Learning via the
Alternating Direction Method of Multipliers (ADMM)

Sunghee Yun

Head of Global R&D

Gauss Labs Inc.

Sunghee Yun Mar 25, 2022

Today

• What is ADMM for?

• Dual ascent method

• Dual decomposition

• Method of multipliers

• Alternating direction method of multipliers (ADMM)

• Applications for

– general objective functions

– constrained convex optimization

– lasso

– consensus optimization for SVM and lasso (distributed statistical learning)

• Conclusion

ADMM @ Gauss Labs Global R&D Weekly 1

Sunghee Yun Mar 25, 2022

What is ADMM for?

• ADMM is for

– machine learning (or statistical learning) with huge data sets

– decentralized optimization where

∗ agents (or devices in IoT environment) coordinate to solve large problem by

iteratively solving small problems and being coordinated by central agent

• Purpose of the talk

– be exposed to a disciplined way of ML algorithm parallelization

– find room for improvement for my own work area

ADMM @ Gauss Labs Global R&D Weekly 2

Sunghee Yun Mar 25, 2022

Dual ascent method

• consider convex equality-constrained optimization problem:

minimize f(x)

subject to Ax = b

• Lagrangian defined by L(x, y) = f(x) + yT (Ax− b)
• dual function defined by

g(y) = inf
x
L(x, y) = − sup

x
((−AT

y)
T
x− f(x))− bTy = −f∗(−AT

y)− bTy

• dual probem defined by

maximize g(y)

ADMM @ Gauss Labs Global R&D Weekly 3

Sunghee Yun Mar 25, 2022

Dual ascent method

• gradient method for dual problem:

y
k+1

= y
k

+ α
k∇g(yk)

where ∇g(y) = Ax̃− b with x̃ = argminxL(x, y)

• this fact induces the following dual ascent method :

x
k+1

:= argmin
x

L(x, y
k
)

y
k+1

:= y
k

+ α
k
(Ax

k+1 − b)

– consists of two stes; x-minimization and dual update

ADMM @ Gauss Labs Global R&D Weekly 4

Sunghee Yun Mar 25, 2022

Dual decomposition

• suppose that f is separable in x1, . . . , xN , i.e.,

f(x) = f1(x1) + · · ·+ fN(xN)

where x =
[
x1 · · · xN

]T
• then, L is separable, too, since

L(x, y) =

N∑
i=1

fi(xi) + y
T

(
N∑
i=1

Aixi − b
)

=

N∑
i=1

(fi(xi) + y
T
Aixi)− bTy

• thus, x-minimization step splits into N separate minimizations:

xi
k+1

= argmin
xi

Li(xi, y
k
) = argmin

xi

(fi(xi) + y
T
Aixi)

• parallelism can be employed!

ADMM @ Gauss Labs Global R&D Weekly 5

Sunghee Yun Mar 25, 2022

Method of multipliers

• dual ascent fails, e.g., when f is an affine function in x!

• one solution: augmented Lagrangian

Lρ(x, y) = f(x) + y
T
(Ax− b) + (ρ/2)‖Ax− b‖2

2

• method of multipliers:

x
k+1

:= argmin
x

Lρ(x, y
k
)

y
k+1

:= y
k

+ ρ(Ax
k+1 − b)

ADMM @ Gauss Labs Global R&D Weekly 6

Sunghee Yun Mar 25, 2022

Optimality condition

• optimality conditions: Ax∗ − b = 0, ∇f(x∗) + ATy∗ = 0

• xk+1 minimizes Lρ(x, y
k), hence

0 = ∇xLρ(x
k+1
, y

k
)

= ∇xf(x
k+1

) + A
T
(y

k
+ ρ(Ax

k+1 − b))

= ∇xf(x
k+1

) + A
T
y
k+1

• thus, dual feasibility achieved!

• primal feasibility achieved in limit: limk→∞Ax
k+1 = b

ADMM @ Gauss Labs Global R&D Weekly 7

Sunghee Yun Mar 25, 2022

Pros and cons of method of multipliers

• pros: it works even for nondifferentiable or affine f possibly with +∞ value

• cons: the penalty term deprives it of its capability of parallelism!

ADMM @ Gauss Labs Global R&D Weekly 8

Sunghee Yun Mar 25, 2022

Alternating direction method of multipliers (ADMM)

• ADMM

– retains the robustness of method of multipliers

∗ can deal with nondifferentiable f

∗ can deal with affine f

∗ can deal with f with +∞ value

– supports decomposition, hence parallelism

• dubbed “robust dual decomposition” or “decomposable method of multipliers”

ADMM @ Gauss Labs Global R&D Weekly 9

Sunghee Yun Mar 25, 2022

ADMM

• ADMM formulation:
minimize f(x) + g(z)

subject to Ax+ Bz = c

where f and g convex

• then, the augmented Lagrangian defined by

Lρ(x, z, y) = f(x) + g(z) + y
T
(Ax+ Bz − c) + (ρ/2)‖Ax+ Bz − c‖2

2

• finally, ADMM steps:

x-minimization: xk+1 := argminxLρ(x, z
k, yk)

z-minimization: zk+1 := argminz Lρ(x
k+1, z, yk)

dual update: yk+1 := yk + ρ(Axk+1 + Bzk+1 − c)

ADMM @ Gauss Labs Global R&D Weekly 10

Sunghee Yun Mar 25, 2022

Optimality conditions

• optimality conditions

primal feasibility: Ax+ Bz − c = 0

dual feasibility: ∇f(x) + ATy = 0, ∇g(z) + BTy = 0

• since zk+1 minimizes Lρ(x
k+1, z, yk),

0 = ∇g(zk+1) + BTyk + ρBT (Axk+1 + Bzk+1 − c)
= ∇g(zk+1) + BT (yk + ρ(Axk+1 + Bzk+1 − c))
= ∇g(zk+1) + BTyk+1

– thus, (xk+1, zk+1, yk+1) satisfies the second dual feasibility condition!

• primal feasibility and the first dual feasibility are achieved as k →∞

ADMM @ Gauss Labs Global R&D Weekly 11

Sunghee Yun Mar 25, 2022

ADMM in scaled form

• rewrite augmented Lagrangian with r = Ax+ Bz − c and u = (1/ρ)y:

Lρ(x, z, y) = f(x) + g(z) + yT (Ax+ Bz − c) + (ρ/2)‖Ax+ Bz − c‖2
2

= f(x) + g(z) + (ρ/2)(‖r‖2
2 + (2/ρ)yTr)

= f(x) + g(z) + (ρ/2)(‖r + (1/ρ)y‖2
2 − ‖(1/ρ)y‖

2
2)

= f(x) + g(z) + (ρ/2)‖Ax+ Bz − c+ u‖2
2 − (ρ/2)‖u‖2

2

• ADMM in scaled form: (with uk := (1/ρ)yk)

x-minimization: xk+1 := argminx(f(x) + (ρ/2)‖Ax+ Bzk − c+ uk‖2
2)

z-minimization: zk+1 := argminz(g(z) + (ρ/2)‖Axk+1 + Bz − c+ uk‖2
2)

dual update: uk+1 := uk + (Axk+1 + Bzk+1 − c)

• Note that uk = u0 +
∑k

i=1 r
i with rk = Axk + Bzk − c

ADMM @ Gauss Labs Global R&D Weekly 12

Sunghee Yun Mar 25, 2022

Convergence

• assuming that

– f and g are convex, closed, proper, i.e.,

{(x, t) ∈ Rn × R | f(x) ≤ t}, {(z, t) ∈ Rn × R | g(x) ≤ t}

are closed, nonempty, convex sets

– L0 has a saddle point, i.e., existence of (x∗, z∗, y∗) such that

L0(x
∗
, z
∗
, y) ≤ L0(x

∗
, z
∗
, y
∗
) ≤ L0(x, z, y

∗
)

holds for all x, z, y

• ADMM converges:

– iterates approach feasibility: Axk + Bzk − c→ 0

– objective approaches optimal value: f(xk) + g(zk)→ p∗

ADMM @ Gauss Labs Global R&D Weekly 13

Sunghee Yun Mar 25, 2022

Common patterns

• x-update step requires minimizing

f(x) + (ρ/2)‖Ax+ v
k‖2

2

where vk = Bzk − c+ uk

• z-update step requires minimizing

g(z) + (ρ/2)‖Bz + w
k‖2

2

where wk = Axk+1 − c+ uk

• a few special cases enable the simplification of these updates (by exploting special

structures)

ADMM @ Gauss Labs Global R&D Weekly 14

Sunghee Yun Mar 25, 2022

Decomposition

• suppose

– f is block-separable:

f(x) = f1(x1) + · · ·+ fN(xN)

– A comformably block separable, i.e., ATA is block diagonal

A
T
A =

 AT
1

...

AT
N

 [A1 · · · AN

]
=


AT

1A1 0 · · · 0

0 AT
2A2 · · · 0

...

0 0 · · · AT
NAN


• then, x-update splits into N parallel updates of xi

• the very same thing can be applied to z-udpate

ADMM @ Gauss Labs Global R&D Weekly 15

Sunghee Yun Mar 25, 2022

What is proximal operator?

• when A = I, x-update becomes

x
+

= argmin
x

(
f(x) + (ρ/2)‖x− v‖2

2

)
= prox

f,ρ
(v)

• furthermore,

– if f = IC, i.e., f is indicator function of C ⊆ Rn, then

x
+

:= ΠC(v),

i.e., projection onto C.

– if f = λ‖ · ‖1, i.e., f is l1 norm, then

x
+
i := Sλ/ρ(vi),

i.e., soft thresholding where Sa(v) = (v − a)+ − (−v − a)+

ADMM @ Gauss Labs Global R&D Weekly 16

Sunghee Yun Mar 25, 2022

ADMM @ Gauss Labs Global R&D Weekly 17

Sunghee Yun Mar 25, 2022

What if the objective is quadratic?

• assume f(x) = (1/2)xTPx+ qTx+ r

• then, x-update becomes

x
+

= argmin
x

(
(1/2)x

T
Px+ q

T
x+ r + (ρ/2)‖Ax− v‖2

2

)
= (P + ρA

T
A)
−1

(ρA
T
v − q)

• matrix inversion lemma implies

(P + ρA
T
A)
−1

= P
−1 − ρP−1

A
T
(I + ρAP

−1
A
T
)
−1
AP

−1

• if direct method is used, cache factorization of P + ρATA or I+ρAP
−1AT cen save

tremendous of computation efforts

ADMM @ Gauss Labs Global R&D Weekly 18

Sunghee Yun Mar 25, 2022

Solutions for general objective functions

• if f is smooth,

• standard methods can be used:

– Newton’s method, gradient method, quasi-Newton’s method

– preconditioned CG, limited-memory BFGS (scale to very large problems)

• other techniques:

– warm start

– early stopping with variant (or adaptive) tolerances as algorithm proceeds

ADMM @ Gauss Labs Global R&D Weekly 19

Sunghee Yun Mar 25, 2022

Constrained convex optimization

• generic constrained optimization:

minimize f(x)

subject to x ∈ C

• ADMM form:
minimize f(x) + g(z)

subject to x− z = 0

where g(z) = IC(z)

• then, ADMM iterations become:

xk+1 := argminx

(
f(x) + (ρ/2)

∥∥x− zk + uk
∥∥2

2

)
zk+1 := ΠC

(
xk+1 + uk

)
uk+1 := uk + xk+1 − zk+1

ADMM @ Gauss Labs Global R&D Weekly 20

Sunghee Yun Mar 25, 2022

Lasso formulation

• problem formulation:

minimize (1/2)‖Ax− b‖2
2 + λ‖x‖1

• ADMM form:
minimize (1/2)‖Ax− b‖2

2 + λ‖z‖1

subject to x− z = 0

• ADMM iterations:

xk+1 :=
(
ATA+ ρI

)−1 (
ATb+ ρzk − yk

)
zk+1 := Sλ/ρ

(
xk+1 + yk/ρ

)
yk+1 := yk + ρ

(
xk+1 − zk+1

)

ADMM @ Gauss Labs Global R&D Weekly 21

Sunghee Yun Mar 25, 2022

Lasso computational example

• for dense A ∈ R1500×5000, i.e., 5000 predictors and 1500 measurements

• computation efforts:

– 1.32 seconds for factorization

– 0.03 seconds for subsequent ADMM iterations

– 2.97 seconds for lasso solve (∼ 50 ADMM iterations)

– 4.45 seconds for full regularization path (for 30 λs)

ADMM @ Gauss Labs Global R&D Weekly 22

Sunghee Yun Mar 25, 2022

Consensus optimization (CO)

• sum of N functions as objective

minimize
∑N

i=1 fi(x)

– for example, fi could be the loss function of ith training data block

• ADMM form:
minimize

∑N
i=1 fi(xi)

subject to xi − z = 0

– xi is ith local variable

– z is the global variable

– xi − z = 0 are consistency or consensus constraints

– regularization can be added via g(z)

ADMM @ Gauss Labs Global R&D Weekly 23

Sunghee Yun Mar 25, 2022

CO using ADMM

• Lagrangian:

Lρ(x, z, y) =

N∑
i=1

(
fi(xi) + y

T
i (xi − z) + (ρ/2)‖xi − z‖2

2

)
• ADMM iterations:

x
k+1
i := argmin

xi

(
fi(xi) + y

k
i

T
(xi − z) + (ρ/2)‖xi − z‖2

2

)

z
k+1
i :=

1

N

N∑
i=1

(
x
k+1
i + (1/ρ)y

k
i

)
y
k+1
i := y

k
i + ρ(x

k+1
i − zk+1

)

ADMM @ Gauss Labs Global R&D Weekly 24

Sunghee Yun Mar 25, 2022

Statistical interpretation

• fi is negative log-likelihood for parameter x given ith data block

• xk+1
i is MAP estimate under prior N (z + (1/ρ)yki , ρI)

• processors only need to support a Gaussian MAP method

– consensus yields global maximum-likelihood estimate

ADMM @ Gauss Labs Global R&D Weekly 25

Sunghee Yun Mar 25, 2022

Consensus classification

• given data set, (ai, bi), i = 1, . . . , N where ai ∈ Rn, bi ∈ {−1, 1}
• linear classifier sign(aTw + v) with (vector) weight or support vector w, offset v

• margin for ith data is bi(a
T
i w + v)

• loss for ith data is l
(
bi(a

T
i w + v)

)
where l is loss function, e.g., hinge, logistic,

probit, exponential, etc.

• choose w, v so as to minimize

1

N

N∑
i=1

l(bi(a
T
i w + v)) + r(w)

– r(w) is regularization term, e.g., l2, l1, lp, etc.

• split data and use ADMM consensus to solve the optimization problem

ADMM @ Gauss Labs Global R&D Weekly 26

Sunghee Yun Mar 25, 2022

Consensus SVM example

• hinge loss l(u) = (l− u)+ with l2 regularization

• toy problem with n = 2, N = 400 to illustrate

• data split into 20 groups, in worst possible way: each group contains only positive or

negative data

ADMM @ Gauss Labs Global R&D Weekly 27

Sunghee Yun Mar 25, 2022

The 1st Epoch

ADMM @ Gauss Labs Global R&D Weekly 28

Sunghee Yun Mar 25, 2022

The 5th Epoch

ADMM @ Gauss Labs Global R&D Weekly 29

Sunghee Yun Mar 25, 2022

The 40th Epoch

ADMM @ Gauss Labs Global R&D Weekly 30

Sunghee Yun Mar 25, 2022

Distributed lasso

• example with dense A ∈ Rm×n where m = 400, 000 and n = 8, 000

– distributed solver written in C using MPI and GSL

– no optimization or tuned libraries (like ATLAS, MKL)

– split into 80 subsystems across 10 (8-core) machines

• computation efforts:

– 30 seconds for loading data

– 5 minutes for factorization

– 2 seconds for subsequent ADMM iterations

– 5 ∼ 6 minutes for lasso solve (∼ 15 ADMM iterations)

ADMM @ Gauss Labs Global R&D Weekly 31

Sunghee Yun Mar 25, 2022

Conclusion

• ADMM

– gives simple single-processor algorithm that is competitive with state-of-the-art

algorithms

– can also be used for solving a very large problems in distributed manner

∗ local agents solve each problem parallely

∗ central (or global) agent gathers local parameters from local agent, updates (dual)

parameters, broadcasts to local agents

– provides a method for distributed computing with data split

– can think of it as a federated learning, e.g., for privacy protection

– can apply it to non-convex problems (without convergence guarantee)

ADMM @ Gauss Labs Global R&D Weekly 32

